Wilson, Tabatha

From: Gilliam, Allen

Sent: Wednesday, July 24, 2013 10:45 AM

To: Thielemier, Steve

Cc: DAutry@macleanfogg.com; Fuller, Kim; Wilson, Tabatha;

pocawater@suddenlinkmail.com

Subject: AR0034835_MacLean ESNA ARP001048 June 2013 semi annual Pretreatment report

and ADEQ reply_20130724

Attachments: pretreatment report 1-13.pdf

Steve,

MacLean-ESNA's June 2013 semi-annual Pretreatment report was received, reviewed, deemed complete and compliant with the Pretreatment Reporting requirements in 40 CFR 403.12 and more specifically with the Metal Finishing standards in 40 CFR 433.

No further action is deemed necessary at this time.

Once again thank you for showing the combined wastestream calculations deriving the proper dilution factor in calculating alternative limits. Please continue this practice.

For future reference you do not have to submit your toxic organic management plan (TOMP) or schematics with these semi-annual reports unless there's been changes to either of them. In that case, per 40 CFR 403.12(j), notations should be made regarding the specific changes. Otherwise, these two documents are one time submittals.

Thank you for your timely report remaining in compliance with the National Pretreatment Regulations in 40 CFR 403.

Sincerely,

Allen Gilliam
ADEQ State Pretreatment Coordinator
501.682.0625

ec: William Daniel, City of Pocahontas Wastewater Manager

E/NPDES/NPDES/Pretreatment/Reports

From: Thielemier, Steve [mailto:SThielemier@macleanfogg.com]

Sent: Friday, June 28, 2013 9:00 AM

To: Gilliam, Allen Cc: Autry, Donnie

Subject: Semi-annual pretreatment Report

Allen

Here is the report for the first half of this year for Maclean/ Esna and if I can be of further help please let me know.

Thanks Steve

Steve Thielemier | Maintenance Supervisor MacLean-ESNA
611 Country Club Road, Ar 72455 | (Map)
Office +1 870-892-4761 |
www.macleanfoggcs.com

The contents of this message may be privileged and confidential. Therefore, if this message has been received in error, please delete it without reading it. Your receipt of this message is not intended to waive any applicable privilege. Please do not disseminate this message without the permission of the author.

Please consider the environment before printing this e-mail

e of this form is <u>not</u> an EPA/ADEQ requirement.	USTRIAL USERS REGULATED BY 40CFR433 Attn: Water Div/NPDES Pretreat
(1) IDENTIFYING INFORMATION	
A. LEGAL NAME & MAILING ADDRESS Mac-Lean ESNA 611 County Club Road Pocahontas, AR 72455	B. FACILITY & LOCATION ADDRESS Mac-Lean ESNA 611 County Club Road Pocahontas, AR 72455
C. FACILITY CONTACT: Chuck Barker TELEPHONE N	UMBER: 870-892-4785 e-mail: cbarker@macleanfogg.com
(2) REPORTING PERIODFISCAL YEAR From 2013	to 2013 (Both Semi-Annual Reports must cover Fiscal Year)
A. MONTHS WHICH REPORTS ARE DUE	B. PERIOD COVERED BY THIS REPORT
June & December	FROM: January 2013 TO: June 2013
(3) DESCRIPTION OF OPERATION	
A. REGULATED PROCESSES CORE PROCESS(ES) CHECK EACH APPLICABLE BLOCK	B. CHANGES: SUMMARIZE ANY CHANGES IN THE REGULATED PROCESSES SINCE THE LAST REPORT. ATTACH AN ADDITIONAL SHEET IF THE SPACE BELOW IS INADEQUATE. PROVIDE A NEW SCHEMATIC IF APPROPRIATE.
G Electroplating G Electroless Plating G Anodizing X Coating G Chemical Etching and Milling G Printed Circuit Board Manufacture	See attached process flow diagram and Table 1 Process Tanl and their contents in the Toxic Organic Management Plan
ANCILLARY PROCESS(ES)* LIST BELOW EACH PROCESS USED IN THE FACILITY Rust Removal Passive Rinse Tank	
SEE 40CFR433.10(n) FOR 40 DIFFERENT OPERATIONS	
C. Number of Regular Employees at this Facility: 93	D. [Reserved]

(4) FLOW MEASUREMENT

INDIVIDUAL & TOTAL PROCESS FLOWS DISCHARGED TO POTW IN GALLONS PER DAY

Process	Average	Maximum	Type of Discharge
Regulated (Core & Ancillary)	2032	2453	Continuous
Regulated (Cyanide)	0	0	N/A
'403.6(e) Unregulated*	0	0	N/A
'403.6(e) Dilute**	98	118	Continuous
Cooling Water**	1564	1888	Continuous
Sanitary	1488	2978	Continuous
Total Flow to POTW	5085	7321	********

[&]quot;"8" Unregulated" has a precise legal meaning; see 40CFR403.6(e).

(5) MEASUREMENT OF POLLUTANTS

A. TYPE OF TREATMENT SYSTEM

B. COMMENTS ON TREATMENT SYSTEM

C. THE INDUSTRIAL USER MUST PERFORM SAMPLING AND ANALYSIS OF THE EFFLUENT FROM ALL REGULATED PROCESSESCORE & ANCILLARY--(AFTER TREATMENT, IF APPLICABLE). ATTACH THE LAB ANALYSIS WHICH SHOWS A MAXIMUM; TABULATE ALL THE ANALYTICAL DATA COLLECTED DURING THE REPORT PERIOD IN THE SPACE PROVIDED BELOW. ZERO CONCENTRATIONS ARE NOT ACCEPTABLE; LIST THE DETECTION LIMIT IF CONCENTRATION WAS BELOW DETECTION LIMIT.

Pollutant(mg/l)	Cd	Cr	Cu	Pb	Ni	Ag	Zn	CN	TTO*
Max for 1 day	.390	1.565	1.910	.390	2.249	0.243	1.475	0.678	1.204
Monthly Ave	0.147	0.966	1.170	0.243	1.345	0.136	0.836	0.367	
Max Measured	0.017	0.045	0.190	<0.04	0.310	< 0.007	0.390	.010	томі
Ave Measured	0.017	0.045	0.190	<0.04	0.310	< 0.007	0.390	.010	TOM

Sample Location: Pretreatment system effluent

Sample Type (Grab or Composite): Grab / Composite

Number of Samples and Frequency Collected: One-Semi annually

40 CFR 136 Preservation and Analytical Methods Use: X Yes G No

Indicate Combined Wastestream Factor if Dilution Streams Exist w/Regulated Streams 0.565

(6) CERTIFICATION

A. Required under 40 CFR 403.12(g)

^{**}Indicate if these Streams commingle with Regulated Streams BEFORE treatment

in accordance with a system of submitted. Based on my inqu	that this document and all attachments were prepared under my direction or supervision designed to assure that qualified personnel properly gather and evaluate the information iry of the person or persons who manage the system, or those persons directly responsible to the information submitted is, to the best of my knowledge and belief, true, accurate, and here are significant penalties for submitting false information, including the possibility of nowing violations.
	Dave Merwitz
	(Corporate Officer or authorized representative)

B. CHECK ONE: G '433.11(e) TOXIC ORGANIC ANALYSIS ATTACHED G '433.12(a) TTO CERTIFICATION

Based on my inquiry of the person or persons directly responsible for managing compliance with the pretreatment standard for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the wastewaters has occurred since filing of the last semi-annual compliance report. I further certify that this facility is implementing the toxic organic management plan submitted to Arkansas Department of Environmental Quality.

Dave Merwitz (Typed Name)
(Corporate Officer or authorized representative)
Date of Signature 2 12 4 6/27/13

Intentionally left blank			

(7) POLLUTION PREVENTION ACT OF 1990 142 U.S.C.	13101 et seg.l
'6602 [42 U.S.C. 13101] Findings and Policy para (b) PolicyThe Congress hereby declar	res it to be the national policy of the United States that pollution should be prevented or reduced at the source tally safe manner, whenever feasible; pollution that cannot be prevented or recycled should be treated in an connent should be employed only as a last resort and should be conducted in an environmentally safe manner.
The User may list any new or ongoing Pollution Preventio	n practices:
a a constant of the constant o	
(8) GENERAL COMMENTS	

40CFR433 SEMI-ANNUAL REPORT CON'D FACILITY NAME: Maclean - Esna

NAME OF CORPORATE OFFICER OR AUTHORIZED REPRESENTATIVE

General Manager OFFICIAL TITLE

(9) SIGNATORY REQUIREMENTS [40CFR403.12(I)]	
I certify under penalty of law that I have personally examined and and all attachments were prepared under my direction or supervise that qualified personnel properly gather and evaluate the informations who manage the system, or those persons directly respons submitted is, to the best of my knowledge and belief, true, accurate penalties for submitting false information, including the possibility	sion in accordance with a system designed to assure action submitted. Based on my inquiry of the person or sible for gathering the information, the information e, and complete. I am aware that there are significant
Dave Merwitz NAME OF CORPORATE OFFICER OR AUTHORIZED REPRESENTATIVE	D. 12 - SIGNATURE

Water from City

Total Process Flow to City

Year			Gallon	Flow	Year			Gallor	n Flow
2013	Days	,	Average	Total	2013	Days		Average	Total
12-7 to 1-7		31	5926	183700	11-30 to1-2		33	2713	89543
1-7 to 2-7		31	5745	178100	1-2 to 2-1		30	3808	114226
2-7 to 3-6		27	3989	107700	2-1 to 3-1		28	4353	121871
3-6 to 4-9		34	2800	95200	3-1 to 4-1		31	3758	116489
4-9 to 5-7		28	2786	78000	4-1 to 5-2		31	3725	115460
5-7 to 6-10		34	2332	79300	5-2 to 5-31		29	3225	93532
			Avg.Flow	3930		Avg.us	ed	3597	
		1	Max.Flow	5926		Max.us	ed	4353	

Avg Flow for 12-1-1 to 6-1-13

		Water used from City	3930 GPD	OUT TO CITY 3,597 GPD		2032 GPD		1661 GPD						
gulated dilution	non-regulated dilution	>		IN 2032 GPD Aeration Mixing Basin		Total Regulated =		Total Dilute Flow =						
Hydraulic Press non-contact cooling water - non-regulated dilution	Lepel Induction Heater non-contact cooling water - non-regulated dilution	Passivate rinse tank - regulated	Rust Removal rinse tank - regulated	Product Deburring - regulated	Mop water - dilute	Salt Spray blow down - dilute	Lab - dilute	Air compressor blow down - dilute	Boiler blow down - dilute	Avg. Flow ed Total 2032	86	Water 1564	1488	Total Flow to POTW 5085
1251 GPD	313 GPD	1231 GPD	782 GPD	19 GPD	93 GPD	1 GPD	2.5 GPD	1 GPD	1 GPD	Regulated Total	Dilute	Cooling Water	Sanitary	Total Fk
1251 GPD Well Water			2442 GPD City Water											

Max Flow for 12-1-1 to 6-1-13

		Water used from City	OUT TO CITY	4,343 GPD		2453 GPD		2006 GPD						
regulated dilution	- non-regulated dilution	×	Z	2453 GPD Aeration Mixing Basin		Total Regulated =		Total Dilute Flow =						
Hydraulic Press non-contact cooling water - non-regulated dilution	Lepel Induction Heater non-contact cooling water - non-regulated dilution	Passivate rinse tank - regulated	Rust Removal rinse tank - regulated	Product Deburring - regulated	Mop water - dilute	Salt Spray blow down - dilute	Lab - dilute	Air compressor blow down - dilute	Boiler blow down - dilute	Avg. Flow tal 2453	118	1888	2978	POTW 7321
1510 GPD Hy	378 GPD Le	1486 GPD Pa	944 GPD Ru	23 GPD Pr	112 GPD M	1 GPD Se	3.0 GPD La	1 GPD Ai	1 GPD Bo	Regulated Total	Dilute	Cooling Water	Sanitary	Total Flow to POTW
1510 GPD Well Water			2948 GPD City Water											

Wastestream Factor Formula

Total process flow out to city = Total regulated + total dilute flow

Combined average wastestream factor is total regulated divided by total process flow to city

Total

Total process

Wastestream

regulated

flow to city

factor

2032

divided by

3597 =

0.565

MacLean ESNA ATTN: Mr. Steve Thielemier 611 Country Club Road Pocahontas, AR 72455

This report contains the analytical results and supporting information for samples submitted on May 16, 2013. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

John Overbey aboratory Director

This document has been distributed to the following:

PDF cc: MacLean ESNA

ATTN: Mr. Steve Thielemier sthielemier@macleanfogg.com

SAMPLE INFORMATION

Project Description:

Two (2) water sample(s) received on May 16, 2013 P.O. No. 25158-00

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest. Ice chest #1 was delivered with shipping documentation.

Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time	Notes
167454-1	001 5-15-13 8:05am	15-May-2013 0805	1
167454-2	001 5-15-13 10:00am	15-May-2013 1000	

Notes:

1. Received temperature of samples did not meet regulatory requirements

Case Narrative:

There were no qualifiers for this data and all samples met quality control criteria.

References:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.

[&]quot;Standard Methods for the Examination of Water and Wastewaters", 21st edition.

[&]quot;American Society for Testing and Materials" (ASTM).

[&]quot;Association of Analytical Chemists" (AOAC).

ANALYTICAL RESULTS

AIC No. 167454-1

Sample Identification: 001 5-15-13 8:05am

 Analyte
 Result
 RL
 Units
 Qualifier

 Total Cyanide SM 4500-CN C,E
 Prep: 16-May-2013 1314 by 308
 < 0.01 Analyzed: 17-May-2013 1614 by 302</td>
 mg/l Batch: W43584

AIC No. 167454-2

Sample Identification: 001 5-15-13 10:00am

Analyte		Result	RL	Units	Qualifier
Cadmium EPA 200.7	Prep: 16-May-2013 1532 by 100	0.017 Analyzed: 17-N	0.004 Nay-2013 0945 by 305	mg/l Batch: S34653	
Chromium EPA 200.7	Prep: 16-May-2013 1532 by 100	0.045 Analyzed: 17-N	0.007 Nay-2013 0945 by 305	mg/l Batch: S34653	
Copper EPA 200.7	Prep: 16-May-2013 1532 by 100	0.19 Analyzed: 17-M	0.006 Nay-2013 0945 by 305	mg/l Batch: S34653	
Lead EPA 200.7	Prep: 16-May-2013 1532 by 100	< 0.04 Analyzed: 17-N	0.04 Nay-2013 0945 by 305	mg/l Batch: S34653	
Nickel EPA 200.7	Prep: 16-May-2013 1532 by 100	0.31 Analyzed: 17-N	0.01 Nay-2013 0945 by 305	mg/l Batch: S34653	
Silver EPA 200.7	Prep: 16-May-2013 1532 by 100	< 0.007 Analyzed: 17-N	0.007 Nay-2013 0945 by 305	mg/l Batch: S34653	
Zinc EPA 200.7	Prep: 16-May-2013 1532 by 100	0.39 Analyzed: 17-N	0.002 Nay-2013 0945 by 305	mg/l Batch: S34653	

LABORATORY CONTROL SAMPLE RESULTS

Analyte	Spike Amount	%	Limits	RPD	Limit	Batch	Preparation Date	Analysis Date	Dil	Qual
Total Cyanide	0.1 mg/l	86.6	85.0-115	1		W43584	16May13 0849 by 308	17May13 1648 by 308		
Cadmium	5 mg/l	100	85.0-115			S34653	16May13 1533 by 100	17May13 0932 by 305		
Chromium	0.5 mg/l	103	85.0-115			S34653	16May13 1533 by 100	17May13 0932 by 305		
Copper	0.5 mg/l	104	85.0-115			S34653	16May13 1533 by 100	17May13 0932 by 305		
Lead	5 mg/l	97.3	85.0-115			S34653	16May13 1533 by 100	17May13 0932 by 305		
Nickel	0.5 mg/l	102	85.0-115			S34653	16May13 1533 by 100	17May13 0932 by 305		
Silver	0.1 mg/l	91.6	85.0-115			S34653	16May13 1533 by 100	17May13 0932 by 305		
Zinc	0.5 mg/l	95.1	85.0-115			S34653	16May13 1533 by 100	17May13 0932 by 305		

MATRIX SPIKE SAMPLE RESULTS

Analyte	Spike Sample Amount	%	Limits	Batch	Preparation Date	Analysis Date	DII	Qual
Total Cyanide	167355-1 0.1 mg/l 167355-1 0.1 mg/l Relative Percent Difference:	76.4 81.1 5.59	75.0-125 75.0-125 20.0	W43584 W43584 W43584	16May13 0849 by 308 16May13 0849 by 308	17May13 1552 by 302 17May13 1554 by 302		
Cadmium	167454-2 5 mg/l 167454-2 5 mg/l Relative Percent Difference:	95.6 96.0 0.389	75.0-125 75.0-125 20.0	S34653 S34653 S34653	16May13 1533 by 100 16May13 1533 by 100			
Chromium	167454-2 0.5 mg/l 167454-2 0.5 mg/l Relative Percent Difference:	96.8 96.7 0.104	75.0-125 75.0-125 20.0	S34653 S34653 S34653		17May13 0936 by 305 17May13 0941 by 305		
Copper	167454-2 0.5 mg/l 167454-2 0.5 mg/l Relative Percent Difference:	108 109 0.692	75.0-125 75.0-125 20.0	S34653 S34653 S34653	16May13 1533 by 100 16May13 1533 by 100			
Lead	167454-2 5 mg/l 167454-2 5 mg/l Relative Percent Difference:	94.3 94.5 0.143	75.0-125 75.0-125 20.0	S34653 S34653 S34653		17May13 0936 by 305 17May13 0941 by 305		
Nickel	167454-2 0.5 mg/l 167454-2 0.5 mg/l Relative Percent Difference:	91.4 91.7 0.135	75.0-125 75.0-125 20.0	S34653 S34653 S34653		17May13 0936 by 305 17May13 0941 by 305		
Silver	167454-2 0.1 mg/l 167454-2 0.1 mg/l Relative Percent Difference:	88.6 88.6 0.0234	75.0-125 75.0-125 20.0	S34653 S34653 S34653		17May13 0936 by 305 17May13 0941 by 305		
Zinc	167454-2 0.5 mg/l 167454-2 0.5 mg/l Relative Percent Difference:	93.3 92.8 0.276	75.0-125 75.0-125 20.0	S34653 S34653 S34653		17May13 0936 by 305 17May13 0941 by 305		

LABORATORY BLANK RESULTS

Analyte	Result	RL	PQL	QC Sample	Preparation Date	Analysis Date	Qual
Total Cyanide	< 0.01 mg/l	0.01	0.01	W43584-1		17May13 1546 by 302	
Cadmium	< 0.004 mg/l	0.004	0.004	S34653-1	16May13 1533 by 100	17May13 0928 by 305	
Chromium	< 0.007 mg/l	0.007	0.007	S34653-1	16May13 1533 by 100	17May13 0928 by 305	
Copper	< 0.006 mg/l	0.006	0.006	S34653-1	16May13 1533 by 100	17May13 0928 by 305	
Lead	< 0.04 mg/l	0.04	0.04	S34653-1	16May13 1533 by 100	17May13 0928 by 305	
Nickel	< 0.01 mg/l	0.01	0.01	S34653-1	16May13 1533 by 100	17May13 0928 by 305	
Silver	< 0.007 mg/l	0.007	0.007	S34653-1	16May13 1533 by 100	17May13 0928 by 305	
Zinc	< 0.002 mg/l	0.002	0.002	S34653-1	16May13 1533 by 100	17May13 1323 by 305	

CHAIN OF CUSTODY / ANALYSIS REQUEST FORM

		0 V	S	Analyses	Analyses Requested	AICC	AIC Control No:
MAGI FA 61/	16500						からかくの
Project	- 11.11		_			AIC P	AIC Proposal No:
Reference:		Sample		7		Carrier	-
Project		Matrix		W)			- 1
Sampled of Aur Park	υ α	ω C	<i>⊢</i> -	1.3		Zec Sec Sec Sec Sec Sec Sec Sec Sec Sec S	Received Temperature C
	Date/Time A M			U			Remarks
No. Identification Co	D .	x ,	-				
001	S-12-13	×	× -				
	9:55 Pm. 12	_ >	_	×			
	<u>></u>						
	Y CO		1	-			
1 100	X my go, al						
						Field	Field pH calibration
	any Transfer		7	2000		uo	0
	Droseovative		Œ.	N		Buffer:	
G = Glass		> 	V = VOA vials		H = HCI to pH2	T = Sodium Thiosulfate	ulfate
NO = none			N = Nitric acid pH2		= NaOH to pH12	Z = Zinc acetate	Carly Misson
Turnaround Time Requested: (Please circle)	(Please circle) N DAYS		<u>~ 6</u>	Relinquished By	Date/Time 13	By: L. Thele	8:36Am
Expedited results requested by:	by:		١٣	Relinquished	Date/Time	Received in Lab	Date/Time
477	Fax:	0 2	6	By:		The lake	(000
Report Address to:	Tent Hickory		<u>Jo_</u>	Comments: '			

TOXIC ORGANIC MANAGEMENT PLAN

for

Maclean-ESNA 611 Country Club Road Pocahontas, AR 72455

> Revised August 2011 by:

Poague & Associates, Inc. 2315 Parkway Lane Van Buren, AR 72956

TOXIC ORGANIC MANAGEMENT PLAN

Maclean-ESNA 611 Country Club Road Pocahontas, AR 72455

MANAGEMENT APPROVAL

This Toxic Organic Management Plan (TOMP) will be implemented as herein described

Signature: 012 4

Name: Dave Merwitz Title: General Manager **Facility Information:**

a subsidiary of MacLean-FOGG Company MacLean-ESNA 611 Country Club Road Pocahontas, AR 72455 Randolph County

Phone: 870-892-5201

SIC code: 3452 - Bolts, Nuts, Screws, Rivets, and Washers

NAICS: 332722 - Bolt, Nut, Screw, Rivet, and Washer manufacturing

Publicly Owned Treatment Works (POTW) - Pocahontas City Sewer

Applicability of the EPA control of Total Toxic Organics to MacLean-ESNA

MacLean-ESNA conducts chromating and also chemical etching and milling operations at the Pocahontas facility. These processes invoke the EPA regulations for "Metal Finishing" under 40 CFR 433 Subpart A. This regulation requires control of a specific list of chemicals known as l'oxic Organics (see Appendix

Metal Finishing companies are regulated for Total Toxic Organics (TTO), and are required to either (1) perform self-monitoring for all TTO's or (2) implement a Toxic Organic Management Plan (TOMP) and submit a certification statement with each self-monitoring report that concentrated toxic organics are not being discharged to the sewerage system.

MacLean-ESNA has elected to implement a TOMP and submit certification statements with its selfmonitoring "Discharge Monitoring Reports" (DMR's)

Federal Regulations state "a discharger shall submit a solvent management plan that specifies to the satisfaction of the permitting authority (or, in the case of indirect dischargers, the control authority) the toxic organic compounds used; the method of disposal used instead of dumping, such as reclamation, contract hauling, or incineration; and procedures for ensuring that toxic organics do not routinely spill or leak into the wastewater. The control authority for MacLean-ESNA is the Arkansas Department of Environmental Quality, Water Division.

Process Description A ..

MacLean-ESNA manufactures elastic stop nuts and precision machined components. The manufacturing processes include metal forming, metal cutting, passivation and metal cleaning.

Wastewater types and volumes are depicted on Figure 1: Process Flow diagram.

The current wastewater pre-treatment system is depicted on Figure 2: Pretreatment Process diagram.

Maclean-ESNA brings in bar stock to manufacture nylon fasteners (lock/stop nuts), some with protective caps. The manufacturing processes include cut-off, stamping or multi-head forming punches, precision tapping (screw) machining, nylon insert insertion. Self-contained CNC machining units use water soluble coolants. Spent coolants are collected in drums and disposed by a waste service company. Tramp oil from any machining or oil removal systems is captured and recycled/disposed by a waste service company. Wastewater from the facility goes to a Wastewater Pretreatment system before being discharged to the city sewer. Descriptions of the seven processes that feed the Wastewater Pretreatment System are listed below and coincide with Figure 1: Process Flow diagram

There are seven process sources of water that feed the Wastewater Pretreatment Process.

- Well water is used as "non contact cooling water" for the Hydraulic Press. This water enters the Pretreatment Process directly in the Effluent Channel, and is therefore not pretreated This water is a "dilute" and is taken into account in the DMR calculations
- 2) City water is used as "non contact cooling water" for the Lepel Induction Heater. This water enters the Pretreatment Process directly in the Effluent Channel, and is therefore not pretreated. This water is a "dilute" and is taken into account in the DMR calculations.
- 3) City water is used in the Passivation process. The Passivation process consists of three tanks Tank 1 contains Nitric Acid and Sodium Dichromate Dyhydrate. Tank 2 contains Nitric Acid. Tank 3 contains rinse water. Parts are run through either Tank 1 or Tank 2, then rinsed in Tank 3. Tank 3 has a constant flow of process water to the pretreatment system when the passivation process is running. Parts taken out of Tank 3 are then run through a spin dryer, which slings any remaining rinse water off the parts. The water from the spin dryer is collected and put back into Rinse Tank 3. Tanks 1 and 2 are pumped out when needed, to remove sludge. All contents of Tanks 1 and 2 are collected in drums and disposed by a hazardous waste service.
- 4) City water is used in the Rust Removal process. This consists of two tanks, Tank 4 contains phosphoric acid, and Tank 5 contains rinse water. Parts are run through Tank 4, then Tank 5. Tank 5 has a constant flow of process water to the pretreatment system when the derusting process is running. Parts taken out of Tank 5 are then run through a spin dryer, which slings any remaining rinse water off the parts. The water from the spin dryer is collected and put back into Rinse Tank 5. The Tank 4 is pumped out when needed, to remove sludge. All contents of Tank 4 are collected in drums and disposed by a hazardous waste service.
- 5) City water is used for the Product Deburring process. This consists of deburring tumblers which drain to a settling pit (#6), then to the Pretreatment system. The settling Pit #6 is pumped out when needed, to remove sludge. All contents of the pit are collected by a vacuum truck and disposed by a hazardous waste service.
- 6) City water is used to feed the facility boilers. The boiler blow-down process generates very low water volume and goes directly to the Pretreatment system
- 7) Condensate is generated during the air compressor blow-down process. This water is very low volume and goes directly to the Pretreatment system. This water is a "dilute" and is taken into account in the DMR calculations.

Identification of Ioxic Organic Chemicals at the facility B

See appendix A for the List of Toxic Organic Chemicals that are regulated by 40 CFR 433 Metal Finishing.

b See Appendix B for the List of Toxic Organic compounds present at the facility and their disposal methods.

Identification of Other potential sources of Toxic Organic Pollutant introduction to the C. Wastewater Treatment System

a Acid Room (Passivation and Rust Removal processes) - Floor drains in the acid room are connected to the main wastewater system. Therefore, spills of small quantities of chemicals could enter the treatment system. However, drums of Toxic Organic chemicals are not stored inside the acid room, and spill kits are available in the area MacLean ESNA has an Emergency Preparedness and Response Plan that addresses spill response and to not allow spills to enter the public sewer or waterways.

b Drums/pails/containers in use throughout the facility - Spills could occur by accidental dumping, spillage during routine transfer, etc MacLean ESNA has an Emergency Preparedness and Response Plan that addresses spill response and to not allow spills to enter

the public sewer or waterways.

c Chemical Storage Areas - Chemicals are stored in bulk quantities in the Chemical Storage area. The chemical storage area is fenced and has secondary containment. Spills could occur by accidental dumping, spillage during routine transfer, etc. Such spills, however, cannot enter the wastewater treatment system since all the chemical storage areas do not have floor drains and spill kits are available.

d Parts Washers Tank 9 - The facility uses parts washers to clean the parts before shipping. The water from these parts washers is pumped to an evaporation tank. The evaporation tank has an oil/grease removal system Oil and Grease is collected in a drum and disposed by a waste service The water is heated and evaporated, so that none of the water is sent to the pretreatment system. This tank is not connected to the pretreatment system. Sludge is collected in drums and disposed by a hazardous waste service. (See Table I below for chemicals)

e Carbowax Tank 7 - The Carbowax tank is used to apply wax to certain parts, as requested by customers. This tank is not connected to the pretreatment system. It is pumped out when necessary, and collected in drums, and disposed by a hazardous waste service. (See Table 1

below for chemicals)

f Cetyl Alcohol Tank 8 - The Cetyl tank is used to apply certain chemicals to certain parts, as requested by customers. This tank is not connected to the pretreatment system. It is pumped out when necessary, and collected in drums, and disposed by a hazardous waste service (See Table 1 below for chemicals)

Preventive Measures - The following are measures that will be taken to prevent toxic organic D chemicals from entering into the sanitary sewer system.

Training - All personnel involved in chemical handling and clean-up activities will receive training in the proper handling and disposal of solvents and clean-up materials in order to keep regulated toxic organics out of the sanitary sewer system.

b. Chemical Storage Area - The Chemical storage area will be maintained in a neat and orderly

manner.

> The storage area shall be inspected weekly

Containers shall be labeled and maintained in good condition

Containers shall be kept closed except when filling or removing chemicals

Leaks and spills will be cleaned up immediately

- c. Manufacturing Area Manufacturing Equipment will be maintained in good working condition
 - Leaking equipment and or piping will be repaired immediately
 - > Leaks or spills will be cleaned up immediately
- Emergency Preparedness and Response Employees who handle chemicals that could be spilled to the floor drains leading to the pretreatment system and eventually the city sewer system shall be trained to the Emergency Preparedness and Response Plan. This plan outlines spill response and containment procedures, and instructions to keep spills out of the city sewer system.
- Pretreatment Standards E. PART 433—METAL FINISHING POINT SOURCE CATEGORY Subpart A-Metal Finishing Subcategory

§ 433.10 Applicability; description of the metal finishing point source category. (a) Except as noted in paragraphs (b) and (c), of this section, the provisions of this subpart apply to plants which perform any of the following six metal finishing operations on any basis material:

- Electroplating,
- Electroless Plating,
- Anodizing,
- Coating (chromating, phosphating, and coloring),
- Chemical Etching and Milling,
- Printed Circuit Board Manufacture

If any of those six operations are present, then this part applies to discharges from those operations and also to discharges from any of the following 40 process operations: Cleaning, Machining, Grinding, Polishing, Tumbling, Burnishing, Impact Deformation, Pressure Deformation, Shearing, Heat Treating, Thermal Cutting, Welding, Brazing, Soldering, Flame Spraying, Sand Blasting, Other Abrasive Jet Machining, Electric Discharge Machining, Electrochemical Machining, Electron Beam Machining, Laser Beam Machining, Plasma Arc Machining, Ultrasonic Machining, Sintering, Laminating, Hot Dip Coating, Sputtering, Vapor Plating, Thermal Infusion, Salt Bath Descaling, Solvent Degreasing, Paint Stripping, Painting, Electrostatic Painting, Electropainting, Vacuum Metalizing, Assembly, Calibration, Testing, and Mechanical Plating.

Pretreatment Standards for the Metal Finishing Category (40 CFR 433)

Pretreatment Standards for Existing Sources (PSES)

Pollutant	Daily Maximum, mg/l	Max. Monthly Avg, mg/l
Cadmium	0.69	0 26
Chromium	2.77	171
Copper	3 38	2.07
Lead	0 69	0.43
Nickel	3.98	2 38
Zinc	2.61	1 48
Silver	0.43	0 24
Cyanide (total)	12	0 65
Total Toxic Organics	2 13	-

No user introducing wastewater pollutants into a publicly owned treatment works under the provisions of this subpart shall augment the use of process wastewater as a partial or total substitute for adequate treatment to achieve compliance with this standard.

An existing source submitting a certification in lieu of monitoring pursuant to § 433 12 (a) and (b) of this regulation must implement the toxic organic management plan approved by the control authority.

An existing source subject to this subpart shall comply with a daily maximum pretreatment standard for TTO of 4.57 mg/l

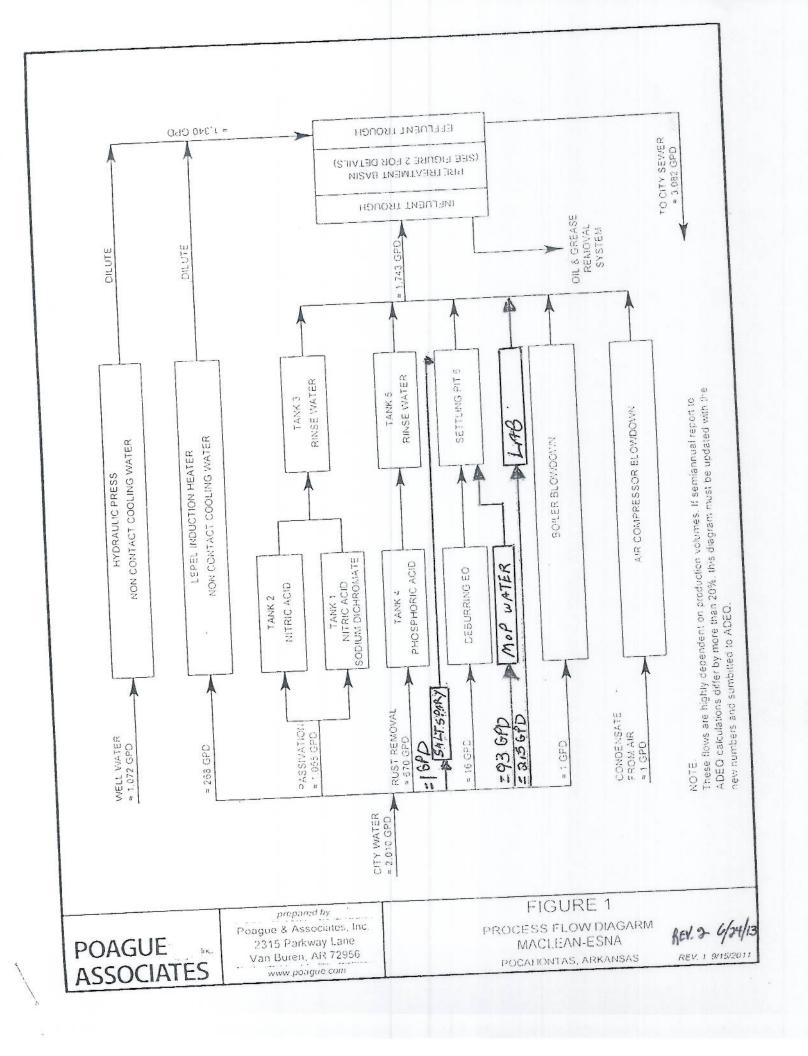
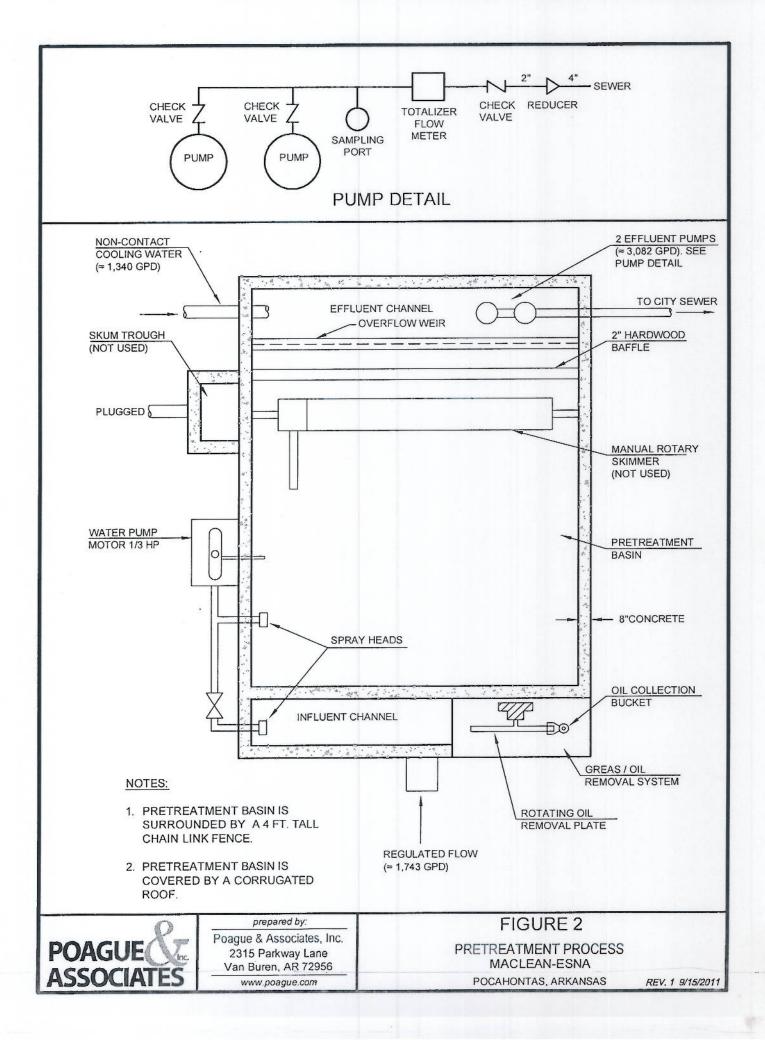



Table 1
Process Tanks and their contents

Tank number	Chemical Trade name, if any	Chemical name	
Tank #1		Nitric Acid	
		Sodium Dichromate Dyhydrate	
Tank #2		Nitric Acid	
Tank #3		Fresh water with chemical drag-out from tanks 1 & 2	
Tank #4		Phosphoric Acid	
Tank #5		Fresh water with chemical drag-out from tank 4	
Settling Pit #6	MI Clean PW 16LT	Sodium Hydroxide Sodium Metasilicate Sodium Phosphate, Dibasic Borates, Tetra, Sodium salts – pentahydrate Diethylene Glycol N-Butyl ether	
	Almet B	Sodium Metasilicate Triphosphoric Acid Pentasodium salt Triethanolamine Polyethylene Glycol Octyphenol Ether	
	Cutting Compound DG 16	Aluminum Oxide	
	Burnishing Compound 203	Powdered Mild Alkaline Salt (not regulated)	
	Cutting Compound 17 DST	Quartz	
	Emerald ICP 1	Amine soap and surfactants (not regulated)	
Lus	Lusterlume BASC	Powdered mild alkaline soap (not regulated)	
	R2 Rust inhibitor	Sodium Nitrate Sodium Carbonate Sodium Hexametaphosphate	
	BH-38	2-Butoxyethanol (not regulated)	
	Morton Salt	Sodium Chloride	

NOTE: Tanks 7, 8, 9 are not connected to the Pretreatment System and therefore not on the Process Flow Diagram. They are located in the Acid Room and listed here for reference and tank contents.

Tank 7	4 Chlorobenzotrifluoride	Benzene - Toxic Organic
(Carbowax)	Carbowax	Polyethylene Glycol
Tank 8	Cetyl Alcohol NF	1-Hexadecanol
(Cetyl Alcohol)		1-Octacecanol
		1-Tetradecanol
	4 Chlorobenzotrifluoride	Benzene - Toxic Organic
Tank 9	R2 Rust inhibitor	Sodium Nitrate
(Parts washer waste		Sodium Carbonate
water)		Sodium Hexametaphosphate
	Cleaner P 005M	Sodium Carbonate
		Sodium Metasilicate
		Triphosphoric Acid Pentasodium salt
		Polypropylene Glycol
	Gillite 162X	Nonylphenol, branched, ethoxlyated
		Amides, coco, N,N-bis(hydroxyethyl)
		2,2,2-nitrilotriethanol
		2,2-iminodiethanol
	Rustarest 230	Naphtha
		Sodium Sulfonate
		2-Butoxy Ethanol

Appendix A

List of Toxic Organic Chemicals that are regulated by 40 CFR 433 Metal Finishing, as listed on the EPA website, last revised July 2010

Acenaphthene

Acrolein

Acrylonitrile

Benzene

Benzidine

Carbon tetrachloride (tetrachloromethane)

Chlorobenzene

1.2.4-Trichlorobenzene

Hexachlorobenzene

1,2,-Dichloroethane

1,1,1-Trichloroethane

Hexachloroethane

1,1-Dichloroethane

1,1,2-Trichloroethane

1,1,2,2-Tetrachloroethane

Chloroethane

Bis (2-chloroethyl) ether

2-Chloroethyl vinyl ether (mixed)

2-Chloronaphthalene

2,4,6-Trichlorophenol

Parachlorometa cresol

Chloroform (trichloromethane)

2-Chlorophenol

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

3,3-Dichlorobenzidine

1,1-Dichloroethylene

1,2-Trans-dichloroethylene

2,4-Dichlorophenol

1,2-Dichloropropane

1,3-Dichloropropylene (1,3-dichloropropene)

2,4-Dimethylphenol

2,4-Dinitrotoluene

2.6-Dinitrotoluene

1,2-Diphenylhydrazine

Ethylbenzene

Fluoranthene

4-Chlorophenyl phenyl ether

4-Bromophenyl phenyl ether

Bis (2-chloroisopropyl) ether

Bis (2-chloroethoxy) methane

Methylene chloride (dichloromethane)

MacLean ESNA

Methyl chloride (chloromethane)

Methyl bromide (bromomethane)

Bromoform (tribromomethane)

Dichlorobromomethane

Chlorodibromomethane

Hexachlorobutadiene

Hexachlorocyclopentadiene

Isophorone

Naphthalene

Nitrobenzene

2-Nitrophenol

4-Nitrophenol

2,4-Dinitrophenol

4,6-Dinitro-o-cresol

N-nitrosodimethylamine

N-nitrosodiphenylamine

N-nitrosodi-n-propylamine

Pentachlorophenol

Phenol

Bis (2-ethylhexyl) phthalate

Butyl benzyl phthalate

Di-n-butyl phthalate

Di-n-octyl phthalate

Diethyl phthalate

Dimethyl phthalate

1,2-Benzanthracene

(benzo(a)anthracene)

Benzo(a)pyrene (3,4-benzopyrene)

3,4-Benzofluoranthene (benzo(b)fluoranthene)

11,12-Benzofluoranthene

(benzo(k)fluoranthene)

Chrysene

Acenaphthylene

Anthracene

1,12-Benzoperylene (benzo(ghi)perylene)

Fluorene

Phenanthrene

1.2.5,6-Dibenzanthracene

(dibenzo(a,h)anthracene)

Indeno(1,2,3-cd) pyrene (2,3-o-phenlene pyrene)

Pyrene

Tetrachloroethylene

Toluene

Trichloroethylene

Vinyl chloride (chloroethylene)

Aldrin

Dieldrin

Chlordane (technical mixture and metabolites)

4.4-DDT

4.4-DDE (p,p-DDX)

4,4-DDD (p,p-TDE)

Alpha-endosulfan

Beta-endosulfan

Endosulfan sulfate

Endrin

Endrin aldehyde

Heptachlor

Heptachlor epoxide

(BHC-hexachlorocyclohexane)

Alpha-BHC

Beta-BHC

Gamma-BHC

Delta-BHC

(PCB-polychlorinated biphenyls)

PCB-1242 (Arochlor 1242)

PCB-1254 (Arochlor 1254) PCB-1221 (Arochlor 1221)

PCB-1232 (Arochlor 1232)

PCB-1248 (Arochlor 1248) PCB-1260 (Arochlor 1260)

PCB-1016 (Arochlor 1016)

Toxaphene

Appendix B

List of Toxic Organic compounds present at the facility and their disposal methods, as of August 2011

Product/Chemical Name	Regulated Constituent	Annual Quantity	Disposal Method
4-Chlorobenzotrifloride	Benzene	3204 lbs	Hazardous waste disposal
Micarta	Phenol	2.5 lbs	Block Consumed during use
Buehler Epo-Met F, Epo- Met G	Phenol	< 1 lb	Epoxy powder consumed during use
Gasoline	Benzene	300 lbs	Consumed during use